Asymmetric Hydrogenation Catalyzed by Cationic Ferrocenylphosphine Rhodium(I) Complexes and the Crystal Structure of a Catalyst Precursor

William R. Cullen, ${ }^{\text {1a }}$ Frederick W. B. Einstein, ${ }^{\text {1b }}$ Chung-Hsi Huang, ${ }^{\text {1b }}$ Anthony C. Willis, ${ }^{\text {b }}$ and E.-Shan Yeh ${ }^{\text {ta }}$
Contribution from the Department of Chemistry. Unitersity of British Columbia. Vancolter. British Columbia. Canada V6T IW5. and the Department of Chemistry. Simon Fraser Unitersity. Burnaby. British Columbia. Canada V5. IS6. Receited May 30.1979

Abstract

The asynmetric hydrogenation of acylamocinnamic acid and acylaminoatrylic acid is catalyzed by the cationic rhodium (1) complexes $[((+)$ - or (-)-PPFA) Rh(diene $)] \mathrm{X}[(+)$-or $(-)$-PPFA $=(S, R)$-or $(R . S)$ - α - (2-diphenylphosphinoferrocenyl)ethyldmethylamine. dienc $=$ norbormadiene or cyclooctadienc. $\mathrm{X}=\mathrm{ClO}_{4} . \mathrm{PF}_{6} . \mathrm{B}\left(\mathrm{C}_{6}, \mathrm{H}_{5}\right)_{4} . \mathrm{BF}_{4}$. but not all combinations]. The reactions take place in aleohol solutions at $32^{\circ} \mathrm{C}\left(p \mathrm{H}_{2}=1\right.$ atm $)$. The einnamic acid derivative is hydrogenated in high chemical $(\sim 90 \%)$ and optical yield $(\sim 80 \%)$. The acrylie acid is hydrogenated faster but the optical yields are lower. $[(\mathrm{PPFA}) \mathrm{Rh}(, \mathrm{BD})] \mathrm{PF}_{6}$ ursstallizes in the space group $P 21 / c$ with $a=9.406(6) \AA, b=29.68(2) \AA, c=11.600(8) \AA, \beta=$ $94.55(3)^{\circ}$, and $Z=4$. The structure was solved by heavy-atonı procedures and refined to a final R_{1} of 0.083 . The ligand chelates to the nictal eenter through the \mathcal{V} and P and the geometry around the rhodium atom is square planar. Models based on this structure indicate that the diastereotopic diserimination necessary for asymnetric reduction to occur probably arises because of steric interactions between the oleffin substrate and the bound PPFA ligand. This model successfully predicts the absolute configuration of the products.

In recent years there has been considerable interest in the asymmetric hydrogenation of prochiral olefins catalyzed by rhodium(1) derivatives of chiral phosphines. ${ }^{2}$ In particular the Monsanto Co. is producing L-Dopa by this method using an appropriate amino acid precursor as substrate. ${ }^{3}$ High optical yiclds can be obtained using chelating di(tertiary phosphine) ligands such as $1-4^{4}$ 7 among others. ${ }^{2.1}$ d. 8 R hodium catalysts

containing chiral diphosphinites are also effective as asymmetric catalysts for olefin hydrogenation ${ }^{2}$ and recently considerable success has been achieved when the backbone of the ligand is a sugar derivative. ${ }^{\text {, }}$
The two di(tertiary phosphines) 5^{10} and 6^{11} have also been

5

$R=H, C_{2} R^{\prime}$

(S, R)-PPFA
used as ligands in rhodium(1) complexes which catalyze the hydrogenation of substrates such as (Z)- α-acylaminocinnamic acid and in this paper we describe the use of 7 PPFA in the asymmetric hydrogenation of similar substrates. ${ }^{12}$ The ligand 7 is easier to prepare and isolate than $2-5$, is readily available in either hand, and seems to be as effective a ligand as 1.

Although the origin of the diastereotopic discrimination which leads to the high optical yields in these catalytic reactions is unknown, suggestions have been made on the basis of the structures ${ }^{7.14}$ of $[(\text { dipamp }) \mathrm{Rh}(\mathrm{COD})]^{+}$and $[($chiraphos $)-$
$\mathrm{Rh}(\mathrm{COD})]^{+}$that the orientation of the four aryl groups on the two phosphorus atoms is important. In this paper we report the structure of [(PPFA) $\mathrm{Rh}^{(N B D)] \mathrm{PF}_{6} \text { in which the rhodium }}$ atom is coordinated by nitrogen and phosphorus and which contains only two phenyl groups which could interact with the substrate.

Experimental Section

Air-sensitive reagents and produets were manipulated in a N_{2} or Ar atmosphere.

Conductivily measurements were made in nitronethane at $25^{\circ} \mathrm{C}$ using a Wayne Kerr Universal Bridge B221A. Infrared spectra were run on a Perkin-Elner 457 spectronncter and nuclear nagnetic resonance spectra on Varian HA- 100 and T-60 instruments. Chemical shifts are given in parts per nillion downfield from internal $\mathrm{Me}_{4} \mathrm{Si}$. Optical rotations were monitored on a Perkin-Elmer 141 polarimeter. Cell lengths of 1 and 10 cm were used and the light source was the sodiunll D line (589 nm).
$N . N$-Dimethyl- α-ferrocenylamine was prepared and resolved using $(R)-(+)$-tartaric acid as previously described. ${ }^{15}$

Microanalyses were done by Mr. Peter Borda, Chemistry Department. University of British Columbia.

Preparation of ($\boldsymbol{S}, \boldsymbol{R}$)- and ($\boldsymbol{R}, \boldsymbol{S}$)- α-(2-Diphenylphosphinoferrocenyl)ethyldimethylamine, $(\boldsymbol{R}, \boldsymbol{S})-(-)$-PPFA and $(\boldsymbol{S}, \boldsymbol{R})-(+)$-PPFA. The method is based on published reports. ${ }^{13,16,17}$ A solution of n-butyllithium in hexane ($21 \mathrm{~m} \mathrm{l} . .2 .2 \mathrm{M}$) was added to 10 g of $(R)-(+)$ $N . N$-dimethyl- α-ferrocenylanine in diethyl ether (60 mL) at $23^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 h and slowly treated with ehlorodiplenylphosphine (17.5 g). The mixture was refluxed for 2 h . An aqucous slurry (80 ml) of XaHCO_{3} was slowly added with stirring (20 min). The preeipitate was filtered and washed with diethylether until all the yellow compound had been dissolved. The ether was dried (MgSO_{4}). A brown-yellow solid was obtained by evaporating the ether solution to dryness and cooling the resulting oil to $4^{\circ} \mathrm{C}$ overnight. This solid was recrystallized from ethanol to give brown-vellow erystals

(S)-(-)-N.N-Dimethyl- α-ferrocenylamine was treated in the same way to give $(S, R)-(+)-$ PPFA: mp $135^{\circ} \mathrm{C}:[\alpha]^{25} \mathrm{D}+361.4^{\circ}(c 0.381$, ethanol) [lit. $\left.\mathrm{m} \mu 139^{\circ} \mathrm{C},[\mathrm{a}]^{25} \mathrm{D}+361^{\circ}\left(\text { c }^{\circ} 0.6 \text {. ethanol }\right)^{13}\right]$: NMR $\left(\mathrm{CDCl}_{3}\right) 1.17\left(\mathrm{~d} . J=7 \mathrm{~Hz}, \mathrm{CCH}_{3}\right) .1 .80\left(\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.9$ (s. $\mathrm{FeC}_{5} \mathrm{H}_{5}$). 3.5-4.5 (m, $\mathrm{FeC}_{5} \mathrm{H}_{4}$ and CH$)$, 6.9-7.85 ppm (m, $\mathrm{C}_{6} \mathrm{H}_{5}$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{FeNP}: \mathrm{C} .70 .7$; H. 6.35: N. 3.17. Found: C. 70.4: H, 6.33; N, 3.14 .

Preparation of $[i N B D) R h(P P F A)] P_{6}, \wedge T H F$ solution $(2 \mathrm{~mL})$ of PPF: $\triangle(0.685 \mathrm{~g}, 1.55 \mathrm{mmol})$ was added to a solution of $[\mathcal{M D R h C l}]_{2}{ }^{18}$ (2.50 ngg .0 .56 mmol) in benzene (8 mL). To the mixture was added

Table I. Crystal Data

$\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{FeNP}_{2} \mathrm{Rh}$ space group $P 2_{1} / \mathrm{C}$		$\mathrm{mol} \mathrm{wt}$	$\begin{aligned} & 781.3 \\ & 11.1 \mathrm{~cm}^{-1} \end{aligned}$
,	9.406 (6) \AA	$\rho_{0}{ }^{\text {a }}$	$1.59 \mathrm{~g} \mathrm{~cm}^{-3}$
b	29.68 (2) \AA	$\rho_{\mathrm{c}}(Z=4)$	$1.608 \mathrm{~g} \mathrm{~cm}^{-3}$
c	11.600 (8) \AA	final $R_{1}{ }^{\text {b }}$	0.083
β	94.55 (3) ${ }^{\circ}$	final $R_{2}{ }^{\text {c }}$	0.082
U	$3228.2 \AA^{3}$		

$\mathrm{NH}_{4} \mathrm{PF}_{6}(0.171 \mathrm{~g})$ in acetone. A precipitate formed which was filtered and washed with a small quantity of dichloromethane. The filtrate and washings were concentrated in vacuo to give two liquid phases.

The turbid botom phase was isolated and concentrated to approxinately one-half its volume. A red solid precipitated from the solution after 12 h at $20^{\circ} \mathrm{C}$. ${ }^{19}$ This was filtered off, washed with diethyl ether, and dried. The red solid was recrystallized from a minimuni quantity of dichloromethane by the addition of ethanol and diethyl ether: $\mathrm{mp} 192^{\circ} \mathrm{C}$ dec: $\mathrm{MMR}\left(\mathrm{CDCl}_{3}\right) 1.78$ (d. $J=6.4 \mathrm{~Hz}$. $\left.\mathrm{CCH}_{3}\right) 2.42\left(\mathrm{~s}, \mathrm{NCH}_{3}\right) .3 .19\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 3.61\left(\mathrm{~s}, \mathrm{FeC}_{5} \mathrm{H}_{5}\right), 1.46$ and 4.14 (s. NBD). $4.44\left(\mathrm{~m}, \mathrm{FeC}_{5} \mathrm{H}_{3}\right) .7-8.5\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \mathrm{A}=72.3 \Omega^{-1}$ $\mathrm{cni}^{-1} \mathrm{M}^{-1}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{FeF}_{6} \mathrm{NP}_{2} \mathrm{Rh}: \mathrm{C}, 50.7: \mathrm{H}, 4.61 ; \mathrm{N}$. 1.79. Found: C, 47.7: H, 4.78: N. 1.48.

Preparation of \|(COD) $/ \mathrm{Rh}(\mathrm{PPFA})] \mathrm{ClO}$. This was prepared from $\mathrm{Rh}(\mathrm{COD}) \mathrm{acac}^{20}$ as described by Schrock and Osborn. ${ }^{21}$ Orange-red erystals, mpp $185^{\circ} \mathrm{C}$ dec. were obtained from ethanol. $\Lambda=73.6 \Omega^{-1}$ $\mathrm{cin}^{-1} \mathrm{M}^{-1}$. Anal. Caled for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{ClFe} \mathrm{NO}_{4} \mathrm{PRh}: \mathrm{C} .55 .2 ; \mathrm{H}, 5.41$: N. 1.89. Found: C. 54.6: H, 5.09; N. 1.90.

Sinilarly were prepared ${ }^{21}$ the following compounds.
$\|(\mathbf{C O D}) \mathbf{R h}(\mathbf{P P F A}) \mid \mathrm{BF}_{4}$: an orange-red solid. $\mathrm{mp} 190^{\circ} \mathrm{C} \mathrm{dec}$, recrestallized from ethanol, $\Lambda=73.9 \Omega^{-1} \mathrm{~cm}^{-1} \mathrm{M}^{-1}$. Anal. Caled for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{BF}_{4} \mathrm{FeNPR}: \mathrm{C}, 55.2 ; \mathrm{H}, 5.41 ; \mathrm{N} .1 .89$. Found: $\mathrm{C}, 55.2 ; \mathrm{H}$, 5.31: N, 1.89.
 Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{ClFeNO}{ }_{4} \mathrm{PRh}: \mathrm{C}, 53.8 ; \mathrm{H}, 4.89 ; \mathrm{N}, 1.90$. Found: C, 53.5; H, 4.84; N, I.83.
 ${ }^{\circ} \mathrm{C}$ dec, $A=50.13 \Omega^{-1} \mathrm{~cm}^{-1} \mathrm{M}^{-1}$. Anal. Calcd for $\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{BFeNPRh}$: C, 71.7: H. 6.22: N. 1.44. Found: C, 71.4: H, 6.10: N, 1.44.

Preparation of (PPFA $\mathbf{R h}(\mathbf{C O}) \mathrm{Cl}$. Using the procedure of Vallarino ${ }^{22} \mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}(0.13 \mathrm{~g})$ in benzene $(2-5 \mathrm{~mL})$ was treated with 0.3 g of ligand in benzene (25 mL). The resulting complex (immediate reaction) was recrystallized from benzene, $\mathrm{mp} 124-125^{\circ} \mathrm{C}(80 \%$ yicld), IR $\nu(\mathrm{CO}) 1990 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{CIFeNOPRh}$: C. 58.2; H, 4.99: ㅅ. 2.05; C1. 5.21. Found C. $58.1 ; \mathrm{H}, 5.10$; N. 1.80 ; C1, 5,08.
Preparation of (PPFA) $\mathrm{Ni}(\mathrm{CO})_{3}$. As described by King ${ }^{23}$ PPFA (3.4 $\mathrm{g})$ in diethyl ether was heated with $\mathrm{Ni}(\mathrm{CO})_{4}(1.31 \mathrm{~g})$. An orangeyellow solid precipitated. This was washed with diethyl ether to afford orange-yellow crystals: mp $135^{\circ} \mathrm{C}\left(86 \%\right.$ yield): IR ($\mathrm{C}_{6} \mathrm{H}_{12}$ solution) $u(\mathrm{CO}) 1980.2000 .2060 \mathrm{~cm}^{-1}$. Anal. Caled for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{FeNNiO}_{3} \mathrm{P}$: C. 59.6: H, 4.79: , 2.40. Found: C, 59.4; H. 4.83:
, 2.44.

Hydrogenation Experiments. These were conducted in a simple gas uptake apparatus. The reaction flask was maintained at $32{ }^{\circ} \mathrm{C}$ and the H_{2} pressure was 1 atm. Details are given in Tables 1 V and V . Optical yields were calculated on the basis of the reported values for the optically pure compounds (N-acetyl-(R)-phenylalanine, $[\alpha]{ }^{26} \mathrm{D}$ $-51.8^{\circ}(c)$, EtOH $) ;{ }^{24} \mathrm{~N}$-acetyl- (S)-phenylalanine, $[\alpha]^{26} \mathrm{D}+46.0^{\circ}$ (c 1, EtOH) : $2^{25} N$-acetyl- (R)-alanine, $\left.[\alpha]_{\mathrm{D}}+66.5^{\circ}\left(c 2, \mathrm{H}_{2} \mathrm{O}\right)^{26}\right)$ and the pure S isomer was assumed to have the same degree of optical rotation but with opposite direction. The reaction products were isolated by removing the solvent under a vacuum. In the case of N acetylphenylalanine the solid was washed with 4 mL of dichloromethane (three times) to remove the catalyst and to avoid a recrystallization from water. For N-acetylalanine the solid reaction product was dissolved in 10 mL of water filtered through Celite (two times). The product was obtained by freeze drying this solution.

Structure Determination of [(PPFA)Rh(NBD)]PF 6 . Derivatives of chiral and racenic $[(\text { PPFA }) \mathrm{Rh}(\mathrm{NBD})]^{+}$and $[(\mathrm{PPFA}) \mathrm{Rh}(\mathrm{COD})]^{+}$ with various counterions were prepared in attempts to nake crystals suitable for X-ray crystallographic studies. In all cases the crystals were small or badly formed. The best crystals which could be obtained were of racemic $\left[(\pm)\right.$-(PPFA) Rh(NBD) PF_{6}. An orange single

Figure 1. Projeced view of the cation showing atomic labeling scheme. Cyclopentadienyl and phenyl hydrogen amom have been deteted for elarity: each hydrogen atom is given the index of the carbon atom to whiel it is allached.
crystal $0.22 \times 0.18 \times 0.18 \mathrm{~mm}$ was used in the X -ray study. Photographs taken with $\mathrm{Cu} \mathrm{K} \alpha$ radiation revealed Laue $2 / \mathrm{m}$ symmetry and systematic absences which uniquely determined the space group to be $P 2_{1} / c$. Accurate cell diniensions were obtained by least squares from the setting angles of 12 reflections which were accurately centered on a Picker FACS-1 four-circle automated diffractometer employing graphite monochromatized Mo $K \alpha_{1}$ radiation ($\lambda=$ $0.70926 \AA$). Crystal data are given in Table 1 .

The intensities of 1318 unique reflections with $3^{\circ}<2 \theta<30^{\circ}$ were measured, and of these 847 with $I>2.3 \sigma_{1}\left(\sigma_{1}\right.$ is the standard deviation derived from counter statistics and a precision factor of 0.03) were regarded as observed and used in structure solution and refinement. Reflections with $20>30^{\circ}$ were generally very weak and therelore we-e not measured. Data were collected by a $\theta-2 \theta$ scan running at 2° mi 1^{-1} with a scan width of 1.5° plus a correction for $\mathrm{K} \alpha_{1}-\mathrm{K} \alpha_{2}$ separation. Stationary-crystal, stationary-counter 20 -s background counts were measured at both limits of each scan. Two standard reflections were measured after every 73 data points. Data were scaled according to the variation in the standards but there was no evidenee of decomposition. A temperature of 295 K was maintained throughout. No correction was made for absorption.

Determination and Refinement of the Structure. The structure was solved by conventional heavy-atom procedures. Full-matrix leastsquares refinensent of all nonhydrogen atoms with isotropic tenmperature factors yielded a value of 0.097 for $R_{1} . \mathrm{Rh}(1) . \mathrm{Fe}(1)$, and $\mathrm{P}(2)$ were assigned anisotropic temperature factors in further refinement which resúlted in $R_{1}=0.091$. The positions of the nonnethyl hydragen atoms were determined geometrically (sp^{2} or sp^{3} geometry at the carbon atom, $r_{(-H)}=0.95 \AA$). These atoms were incorporated in further least squares using the temperature factors of the carbon atons to 'which they are attached; the paraneters were not refined. but were recalculated several times during subsequent refinensent. Λ difference Fourier map at this stage revealed a number of peaks and troughs in the vicinity of the PF_{6} anion which suggested that the fluorine atoms should have anisotropic temperature factors. However, they turned noupositive definite when refined, presumably owing to the weakness of the data set and the low observations/variable ratio (3.7). and so isotropic temperature factors were retained. Final R_{1} was 0.083 .

In the later stages of refinensent a weighting scheme of the forms $w:=1 / \sigma_{F}^{2}$ was used. All shift-to-error ratios were less than 0.1 in the final cycle. Neutral scattering factors were employed ${ }^{27}$ and anonalous dispersion corrections applied for rhodium. iron, and phosphorus. ${ }^{28}$ The atom-labeling scheme is shown in Figure 1. Final atomic parameters are given in Table ll, interatomic distances and angles in Table 111, and least-squares planes in Table IV.

Results and Discussion

Ugi and co-workers ${ }^{15.29}$ showed that lithiation of (R) N, N-dimethyl-1-ferrocenylethylamine affords the stabilized derivative $\mathbf{8}$ in high yield and in high stereospecificity (95%) with only a small proportion of the diastereomer of structure 9. Reaction of the mixture with chlorodiphenylphosphine af-

Table II. Final Positional and Thermal Parameters for [(PPFA)Rh(NBD)]PF ${ }_{6}{ }^{\text {ab }}{ }^{h}$

${ }^{\text {a }}$ Estimated standard derivations of the least significant figures are given in parentheses here and in succeeding tables. ${ }^{h}$ Positional and thermal parameters for the H atoms are deposited as supplementary material. "Anisotropic thermal parameters are in the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\ldots+2 U_{23} k l b^{*} c^{*}\right)\right]$.

fords (R, S)-PPFA in good yield. Here the " R " refers to the configuration at the carbon atom of the $-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NMe}_{2}$ group and " S " to the chirality of the disubstituted ferrocene ring (planar chirality). The optical isomer (S, R)-PPFA (7) is obtained by the same procedure from the (S)-ferrocenylamine. A crystal structure determination established that $(+)$-PPFA has the S, R configuration. ${ }^{30}$ Since the ligands 1-4
are either chiral at phosphorus or in the hydrocarbon backbone it was of interest to study the properties of 7 and its enantiomer because of the existence of two sources of chirality. In addition the ligands contain a very bulky ferrocenyl group which could also show some electronic effects once complexed to a metal.

Nickel carbonyl and PPFA react easily to afford (PPFA)$\mathrm{Ni}(\mathrm{CO})_{3}$. Here, only the phosphorus atom is bonded to nickel and we were unable to persuade the ligand to chelate to give the $\mathrm{Ni}(\mathrm{CO})_{2}$ derivative. Furthermore, even in the presence of excess PPFA only monosubstitution takes place. Chelation does take place when PPFA is reacted with $\left[(\mathrm{CO})_{2} \mathrm{RhCl}\right]_{2}$. The product (PPFA) $\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}$ has the $-\mathrm{NMe}_{2}$ group bonded because the NMR spectrum shows the presence of inequivalent

Table III. Selected Interatomic Distances (\AA) and Angles (deg) for [(PPFA)Rh(NBD)]PF ${ }_{6}{ }^{\text {a,h }}$

$\mathrm{Rh}(1)-\mathrm{P}(1)$	2.28(1), 2.31(1)	Rh(1)-N(53)	2.26(3)
$\mathrm{Rh}(1)-\mathrm{C}(63)$	2.08(4)	$\mathrm{Rh}(1)-\mathrm{C}(66)$	2.27(4)
$\mathrm{Rh}(1)-\mathrm{C}(64)$	2.16 (4)	$\mathrm{Rh}(1)-\mathrm{C}(67)$	2.24(4)
$\mathrm{Fe}(1)-\mathrm{C}(11)$	2.00(4)	$\mathrm{Fe}(1)-\mathrm{C}(21)$	2.06 (4)
$\mathrm{Fe}(1)-\mathrm{C}(12)$	2.07(4)	$\mathrm{Fe}(1)-\mathrm{C}(22)$	2.08 (5)
$\mathrm{Fe}(1)-\mathrm{C}(13)$	2.04(4)	$\mathrm{Fe}(1)-\mathrm{C}(23)$	2.06 (4)
$\mathrm{Fe}(1)-\mathrm{C}(14)$	1.97(5)	$\mathrm{Fe}(1)-\mathrm{C}(24)$	2.02(5)
$\mathrm{Fe}(1)-\mathrm{C}(15)$	2.00(4)	$\mathrm{Fe}(1)-\mathrm{C}(25)$	2.06 (4)
$\mathrm{P}(1)-\mathrm{C}(31)$	1.87(4)	$\mathrm{P}(1)-\mathrm{C}(41)$	$1.82(4)$
$\mathrm{P}(1)-\mathrm{C}(21)$	1.79(4)	$\mathrm{N}(53)-\mathrm{C}(52)$	1.46 (4)
$\mathrm{N}(53)-\mathrm{C}(54)$	1.49(5)	$\mathrm{N}(53)$-C(55)	1.49 (4)
$\mathrm{C}(52)-\mathrm{C}(22)$	1.54(5)	C(52)-C(51)	1.49(5)
C(61)-C(62)	1.52(5)	C(61)-C(65)	$1.61(5)$
C(62)-C(63)	1.58(5)	$\mathrm{C}(62)-\mathrm{C}(67)$	1.52(4)
C(63)-C(64)	$1.39(4)$	C(67)-C(66)	1.41(5)
$\mathrm{C}(64)-\mathrm{C}(65)$	1.53(5)	$\mathrm{C}(66)-\mathrm{C}(65)$	1.45(5)
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{N}(53)$	95(1)	MP(1)-Rh(1)-MP(2)	71
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{MP}(1)$	94	$\mathrm{N}(53)-\mathrm{Rh}(1)-\mathrm{MP}(2)$	99
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{MP}(2)$	165	$\mathrm{N}(53)-\mathrm{Rh}(1)-\mathrm{MP}(1)$	170
$\mathrm{Cp}(1)-\mathrm{Fe}(1)-\mathrm{Cp}(2)$	173	$\mathrm{Rh}(1)-\mathrm{N}(53)-\mathrm{C}(52)$	$110(2)$
$\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	113(1)	$\mathrm{Rh}(1)-\mathrm{N}(53)-\mathrm{C}(54)$	111 (3)
$\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(31)$	116(2)	$\mathrm{Rh}(1)-\mathrm{N}(53)-\mathrm{C}(55)$	104(2)
$\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(41)$	112(1)	$\mathrm{C}(52)-\mathrm{N}(53)-\mathrm{C}(54)$	108(3)
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	104(2)	$C(52)-\mathrm{N}(53)-\mathrm{C}(55)$	$113(3)$
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(41)$	105(2)	$\mathrm{C}(54)-\mathrm{N}(53)-\mathrm{C}(55)$	111(3)
$\mathrm{C}(31)-\mathrm{P}(1)-\mathrm{C}(41)$	105(2)	$\mathrm{C}(52)-\mathrm{C}(22)-\mathrm{C}(21)$	125(4)
$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(25)$	127(3)	$\mathrm{C}(52)-\mathrm{C}(22)-\mathrm{C}(23)$	126(4)
$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	125(3)	$\mathrm{P}(1)-\mathrm{C}(41)-\mathrm{C}(42)$	$118(3)$
$\mathrm{P}(1)-\mathrm{C}(31)-\mathrm{C}(32)$	121(4)	$\mathrm{P}(1)-\mathrm{C}(41)-\mathrm{C}(46)$	$120(3)$
$\mathrm{P}(1)-\mathrm{C}(31)-\mathrm{C}(36)$	121(4)	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{N}(53)$	118(4)
$\mathrm{C}(22)-\mathrm{C}(52)-\mathrm{N}(53)$	120(3)	$\mathrm{C}(65)-\mathrm{C}(61)-\mathrm{C}(62)$	89(3)
$C(22)-C(52)-C(51)$	105(3)	C(61)-C(62)-C(67)	100(3)
$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	104(3)	$\mathrm{C}(62)-\mathrm{C}(67)-\mathrm{C}(66)$	105(3)
$C(62)-C(63)-C(64)$	$108(3)$	C(67)-C(66)-C(65)	106(4)
$C(63)-\mathrm{C}(64)-\mathrm{C}(65)$	102(4)	C(66)-C(65)-C(61)	$98(4)$
$C(64)-C(65)-C(61)$	105(3)	C(63)-C(62)-C(67)	101(3)
$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{C}(66$.	110(4)		

" $M P(1)$ is the midpoint between $C(63)$ and $C(64)$; $M P(2)$ is the midpoint between $C(66)$ and $C(67)$: $C p(1)$ is the centroid of $C(11)-C(15)$; $\mathrm{Cp}(2)$ is the centroid of $\mathrm{C}(21)-\mathrm{C}(25){ }^{b}$ Average $\mathrm{C}-\mathrm{C}$ distance in cyclopentadienyl rings is 1.39 (5) \AA, in phenyl rings 1.38 (5) \AA. "Interatomic distance averaged over thermal motion, assuming the atoms to be moving independently.

Table IV. Homogeneous Hydrogenation of α-Acetamidocinnamic Acid ${ }^{a}$

catalyst precursor	solvent	time, h	conversion. \%	optical yield, \%	configuration
$[(\mathrm{COD}) \mathrm{Rh}((-)$-PPFA $)] \mathrm{ClO}_{4}$	methanol	25	91	80	S
$[(\mathrm{COD}) \mathrm{Rh}((+)-\mathrm{PPFA})] \mathrm{ClO}_{4}$	methanol	25	93	73	R
$[(\mathrm{COD}) \mathrm{Rh}((-)$-PPFA $)] \mathrm{BF}_{4}$	ethanol	40	83	75	S
$[(\mathrm{NBD}) \mathrm{Rh}((-)-\mathrm{PPFA})] \mathrm{ClO}_{4}$	methanol	25	93	78	S
[(COD) $\mathrm{Rh}((+)-\mathrm{PPFA})] \mathrm{BF}_{4}$	ethanol	48	91	83	R
$[(N B D) R h((+)-P P F A)] P F_{6}$	2-propanol	48	>96	80	R
$[(N B D) R h((+)-P P F A)] P F_{6}$	ethanol	22	88	84	R
$\underline{[(C O D) R h((-)-P P F A)] B\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}}$	methanol	b	b	b	

" Reactions were carried out at $1 \mathrm{~atm} \mathrm{H}_{2}$ and $32^{\circ} \mathrm{C}$. The concentration of the catalyst was $1.0 \times 10^{-3} \mathrm{M}$ and the substrate $1.0 \times 10^{-1} \mathrm{M}$. Optical yields are based on the rotation of the isolated product in ethanol. ${ }^{b}$ The reaction rate was too low to be measured.
methyl groups. Other examples of similar chelate complexes are known, ${ }^{31}$ although they are not common and are not ($\mathrm{P}-\mathrm{N}$) bonded.

Because of this demonstration of chelation to rhodium and because of the effectiveness of cationic complexes such as $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Rh}\right.$ (diene) $) \mathrm{PF}_{6}$ as catalyst precursors for hydrogenation reactions, ${ }^{32}$ we prepared similar derivatives of PPFA using well-established procedures. ${ }^{21}$ The NMR spectra of the complexes $[(\text { PPFA }) \mathrm{Rh}(\text { diene })]^{+} \mathrm{A}^{-}$(diene $=\mathrm{NBD}, \mathrm{COD} ; \mathrm{A}^{-}$ $=\mathrm{PF}_{6}{ }^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}, \mathrm{BPh}_{4}{ }^{-}$, but not all combinations; see Tables IV and V) show inequivalent NCH_{3} groups as expected and the complexes are $1: 1$ electrolytes with conductivities of approximately $74 \Omega^{-1} \mathrm{~cm}^{-1} \mathrm{M}^{-1}$ except for the $\mathrm{PPh}_{4}{ }^{-}$salt of
$[(\text { PPFA }) \mathrm{Rh}(\mathrm{COD})]^{+}$, which is considerably lower (50.1 Ω^{-1} $\mathrm{cm}^{-1} \mathrm{M}^{-1}$). The lower value may indicate some interaction between anion and cation of the sort described below. Attempts to prepare complexes with two PPFA ligands per rhodium(1) atom were unsuccessful.

Confirmation of the chelate structure comes from the X-ray investigation of [(PPFA) $\mathrm{Rh}(\mathrm{NBD})] \mathrm{PF}_{6}$. Within the unit cell there is a racemic mixture of $[((+)-\mathrm{PPFA}) \mathrm{Rh}(\mathrm{NBD})]^{+}$and $[((-)-\mathrm{PPFA}) \mathrm{Rh}(\mathrm{NBD})]^{+}$cations. The absolute configuration of the former is shown in Figure 1. PPFA coordinates to the Rh atom through the P and N atoms. The Rh atom can be viewed as having a square-planar environment (assuming that each NBD $\mathrm{C}=\mathrm{C}$ bond is filling a single coordination site). The

Table V. Honogencous Hydrogenation of α-Acetamidoacrylic Acid ${ }^{\alpha}$

catalysi precursor	solvent	time. h	conversion, ef	optical yicld. \%	configuration
$[(\mathrm{COD}) \mathrm{Rh}((-)-\mathrm{PPFA})] \mathrm{BF}_{4}$	methanol	7	100	58	S
$[(\mathrm{COD}) \mathrm{Rh}((+)-\mathrm{PPFA})] \mathrm{ClO}_{4}$	niethanol	7	100	55	R
[(COD)Rh(- - PPF A$)] \mathrm{ClO}_{4}$	nethanol	6	100	43	S
[(COD)R $h((-)-\mathrm{PPFA})] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$	metlanol	92	90	26	S

" Reactions were carried out at 1 atm H_{2} and $32{ }^{\circ} \mathrm{C}$. The concentration of the catalyst was $1.0 \times 10^{-3} \mathrm{M}$ and the substrate $1.0 \times 10^{-1} \mathrm{M}$. Optical yiclds are based on the rotation of the isolated product in water.

Rh-P distance of 2.28 (1) \AA is similar to those reported in $[(S, S \text {-chiraphos }) \mathrm{Rh}(\mathrm{COD})]^{+}(2.275$ and 2.266 (1) $\AA) .{ }^{14} \mathrm{ln}$ both these complexes the Rh-P bonds are trans to olefin groups. When a Cl atom is in the trans position the $\mathrm{Rh}-\mathrm{P}$ distance is generally shorter but $\mathrm{Rh}-\mathrm{P}$ is longer when there is a trans phosphine. ${ }^{33}$ The Rh-N bond length is 2.26 (3) \AA.

The $\mathrm{Rh}-\mathrm{C}$ distances are 2.08 and 2.16 (4) \AA for one double bond and 2.27 and 2.24 (4) \AA for the other. Although the average distance for the former $C=C$ (opposite the N atom) is shorter than for the latter, the esd's are too large to draw any conclusions about the possible asymmetry of the $\mathrm{R} h-\mathrm{C}$ distances within each pair. Both equal ${ }^{34.35}$ and unequal ${ }^{36}$ metal-olefin distances have been reported for NBD complexes. $\mathrm{Rh}-\mathrm{C}$ distances for the related complexes $\left[\mathrm{Rh}_{2}(\mathrm{COD})_{2}-\right.$ ($2,2^{\prime}$-biimidazole)] (av 2.11 (1) \AA), ${ }^{37}[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ (av 2.12 (3) \AA), ${ }^{38}$ and $[(S, S \text {-chiraphos }) R h(C O D)]^{+}(\text {av } 2.243(5) \AA)^{14}$ show that the nature of the other ligands has an appreciable effect on the strength of the Rh -olefin bonds. The $\mathrm{C}-\mathrm{C}$ distances and angles within the NBD group are within experimental range of their normal values. ${ }^{34}$

Complexation causes PPFA to assume a different conformation from that found in the crystal structure of the uncoordinated ligand. ${ }^{30}$ (There is a rotation of 40° about the $\mathrm{P}(1)-\mathrm{C}(21)$ and of 116° about $\mathrm{C}(52)-\mathrm{C}(22)$). The rotation about $\mathrm{P}(1)-\mathrm{C}(21)$ brings phenyl group 3 into proximity with the ferrocenyl moiety and forces this ring to be "edge-on" to the Rh atom and ring 4 to be "face-on". The ramifications of these steric factors upon the catalytic action of the complex are discussed below. Generally the bond lengths and angles of the PPFA group are similar to those of the free ligand, the exceptions being around $\mathrm{C}(52)$ where the angle $\mathrm{C}(22)-\mathrm{C}(52)-$ $N(53)$ increases from $107.4(7)^{30}$ to $120(3)^{\circ}$ to allow formation of the six-membered chelate ring (angle $\mathrm{P}(1)-\mathrm{Rh}(1)-$ $N(53)$ is $\left.95(1)^{\circ}\right)$. A consequence of this is a decrease in angle $\mathrm{C}(22)-\mathrm{C}(52)-\mathrm{C}(51)$ from 114.1 (8) to $105(3)^{\circ}$.

The model of the $\mathrm{PF}_{6}{ }^{-}$anion is poor (as is commonly found) owing to its high thermal motion coupled with the other crystallographic problems mentioned above.

The cationic complexes $[(P P F A) R h(\text { diene })]^{+} \mathrm{A}^{-}$are generally good catalyst precursors for the hydrogenation of the acrylic and cinnamic acid derivatives (Tables IV and V). The catalytic species is probably $\left[(\text { PPFA }) \mathrm{Rh}(\text { solvent })_{2}\right]^{+3941}$ rather than the hydride [(PPFA) $\left.\mathrm{RhH}_{2}\right]^{+}$expected on the basis of the work of Schrock and Osborn. ${ }^{32}$ Certainly in the absence of substrate $\mathrm{H}_{2}\left(1 \mathrm{~atm}, 32{ }^{\circ} \mathrm{C}\right)$ reacts with [(PPFA)Rh (diene) $]^{+}$with the loss of color. The catalyzed reduction of the cinnamic acid derivative is slower than that of the acrylic acid. The rates are not very dependent on the nature of the anion apart from the PPh_{4} - derivative, which is inactive in one case and not very effective in the other. This loss of activity is probably due to complex formation between the arene rings and the rhodium(1) center. ${ }^{39,42.43}$ In contrast Knowles and co-workers report that $\left[((\pm)-\mathrm{ACMP})_{2} \mathrm{Rh}(\mathrm{COD})\right] \mathrm{PPh}_{4}$ $\left(\mathrm{ACMP}=\left(0-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{11}\right) \mathrm{P}\right)$ is as good a catalyst precursor as the same cation complexed with $\mathrm{BF}_{4}{ }^{-}$or $\mathrm{PF}_{6}{ }^{-} .^{4+}$ Possibly the difference is duc to a different reduction mechanism with the dihydride ${ }^{32}$ being the active species.

Substrates without acylamino groups such as α-phenylcinnamic acid, α-methylcinnamic acid, β-methylcinnamic acid, and atropic acid are not hydrogenated using the PPFAbased catalyst. These results together with arguments based on optical yields and product configuration suggested to us ${ }^{12}$ that bonding of the substrate carbonyl group to the rhodium in addition to the olefinic bond is an important part of the catalytic pathway. Others ${ }^{45}$ have also made this suggestion and recently it has been put on a factual basis by the determination of the crystal structure of [(diphos) $\mathrm{RhPhCH}=\mathrm{C}(\mathrm{COOMc})$ $\mathrm{NHCOMe}]^{+}$(diphos $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) prepared from $\left[(\text { diphos }) \mathrm{Rh}(\text { solvent })_{2}\right]^{+}$plus substrate. ${ }^{46}$ Here both $\mathrm{C}=\mathrm{C}$ and $C=O$ are coordinated to the rhodium. This binding of the substrate at two sites probably accounts for the difference in rates between the more bulky cinnamic acid and acrylic acid derivatives. However, it must be noted that the interaction between substrate and catalyst is very important when optical yields are considered because it is this same interaction which gives rise to the diastereotopic discrimination necessary for asymmetric reactions to occur. Recently Brown and Chalon$\mathrm{er}{ }^{11}$ have shown that $\left[((+)\right.$-diop $\left.) \mathrm{Rh}(\text { solvent })_{2}\right]$ interacts with only one face of $(Z)-\mathrm{PhCH}=\mathrm{C}(\mathrm{COOH}) \mathrm{NHCOPh}$. Thus the slower rate of reduction of the cinnamic acid correlates with the much higher optical yield of product.

We have built models of the type $[((R, S)$-PPFA) Rh(substrate $)]^{+}$and $\left[((R, S) \text {-PPFA }) \mathrm{Rh}(\text { substrate }) \mathrm{H}_{2}\right]^{+}$making the assumption that the substrate is bound at both $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ and that the H atoms are cis to allow for cis transfer to the olefin. In both cases it is clear that only one face of the substrate can bind casily to the rhodium because of steric interactions and that the bound face if hydrogenated would give rise to the reaction product with the experimentally observed absolute configuration. These repulsive interactions are less in the case of the acrylic acid derivative and hence the discrimination is lower (and the reaction rate faster).

Although these simplistic arguments account for the reactions of the PPFA complexes, they can at best be only part of the whole truth since electronic effects undoubtedly play some part especially when less symmetrical ligands (from an electronic point of view) are bound to the metal center. ${ }^{47}$ The behavior of $[((R)$-prophos $) \mathrm{Rh}(\mathrm{COD})] \mathrm{ClO}_{4}$ is such that high optical yields are obtained, $90 \pm 3 \%$, for the hydrogenation of a range of substrates ${ }^{6}$ in spite of a considerable difference in turnover numbers (e.g., $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{COOH}) \mathrm{NHCOMe}, 600$ h^{-1}, to $\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{C}(\mathrm{COOH}) \mathrm{NHCOMe}, 50 \mathrm{~h}^{-1}\right)$ corresponding to times of about $0.5-3 \mathrm{~h}$ for 100% reaction. Thus the cationic PPFA complexes are not as efficient as those dcrived from prophos (although they are easier to prepare).

Finally, it should be pointed out that the in situ catalysts derived from 5 and $[\mathrm{Rh}(1,5 \text {-hexadiene }) \mathrm{Cl}]_{2}$ which are effective for the slow (20 h) hydrogenation (50 atm) of the usual substrates $\mathrm{RCH}=\mathrm{C}(\mathrm{COOH}) \mathrm{NHCOMe}$ probably have a similar structure to that determined in this investigation (Figure 1). Thus they could be chelated through the P and N atoms on the same ring and not through the two P atoms as assumed by Kumada and co-workers. Shifts between these two bonding possibilities or even to a monodentate phosphine mode could
account for some of the solvent effects on optical yield. For example, in Kumada's system when $\mathrm{R}=4$-acetoxyphenyl the optical yield of product is 8% in MeOH and 87% in $\mathrm{H}_{2} \mathrm{O}$ / $\mathrm{MeOH}(1: 3)$ and this cannot be discussed without knowing the identity of the catalytic species. ${ }^{10}$

In a similar vein in the reduction of ketones by derivatives of 5 and 7 Kumada and co-workers ${ }^{48}$ have shown that MeCOCOOH is reduced to MeCHOHCOOH in 16% optical yield. A much higher optical yield (55%, the highest reported for ketone reduction) is obtained if the ligand is modified by replacing the NMe_{2} by $\mathrm{OH} . \ln$ the latter case the configuration of the product is also changed. It is likely that this sort of result' is due to a change in bonding from $\mathrm{P}-\mathrm{N}$ to $\mathrm{P}-\mathrm{P}$. It is also likely that the bonding in catalysts derived from 6 can vary in a similar manner.
Acknowledgments. The authors wish to thank NSERC Canada for financial support of this work in the form of operating grants to W.R.C. and F.W.B.E.
Supplementary Material Available: Calculated atomic coordinates for H atoms. interatomic distances and angles within the cyclopentadienyl and phenyl rings and $\mathrm{PF}_{6}{ }^{-}$group, least-squares planes, and a listing of structure factor amplitudes (13 pages). Ordering information is given on any current masthead page.

References and Notes

(1) (a) University of British Columbia; (b) Simon Fraser University.
(2) (a) W. S. Knowles. M. J. Sebacky, and B. D. Vineyard. Adv. Chem. Ser., 132, 274 (1974): (b) H. B. Kagan, Pure Appl. Chem., 43, 401 (1975): (c) J. D. Morrison, W. F. Masler, and S. Hathaway in "Catalysis in Organlc Syntheses-1976", P. N. Rylander and H. Greenfield. Eds., Academic Press, New York, 1976, p 203: (d) B. R. James, Adv. Organomet. Chem., 17, 319 (1979).
(3) W. S. Knowles. M. J. Sebacky, and B. D. Vineyard, U.S. Patent 4005127 ($\operatorname{Jan} 25.1977$).
(4) E.g., (a) H. B. Kagan and T. P. Dang. J. Am. Chem. Soc., 94, 6429 (1972): (b) T. P. Dang. J. C. Poulin, and H. B. Kagan, J. Organomet. Chem., 91, 39 (1975).
(5) M. D. Fryzuk and B. Bosnich, J. Am. Chem. Soc., 99, 6202 (1977).
(6) M. D. Fryzuk and B. Bosnich, J. Am. Chem. Soc., 100, 6262 (1978).
(7) E. g.. (a) B. D. Vineyard, W. S. Knowles, M. J. Sebacky, G. K. Bachman, and D. J. Weinkauf, J. Am. Chem. Soc., 99, 5946 (1977); (b) W. S. Knowles. M. J. Sebacky. B. D. Vineyard, and D. J. Weinkauf. ibid, 97, 2567 (1975).
(8) E.g., (a) T. P. Dang. J.-C. Poulin, and H. B. Kagan, J. Organomet. Chem., 91, 105 (1975): (b) K. Tamao, H. Yamamoto. H. Matsumoto. W. Miyake. T. Hayashi, and M. Kumada. Tetrahedron Lett,, 1389 (1977).
(9) (a) W. R. Cullen and Y. Sugi, Tetrahedron Lett., 1635 (1978); (b) Y. Sugi and W. R. Cullen, Chem. Lett., 39 (1978). (c) In situ catalysts have been described by R. Selke. G. Pracejus and H. Pracejus. Proceedings of the Symposium on Rhodium in Homogeneous Catalysis. Veszprem, Mungary, Sept 11-13, 1978, p 143. (d) R. Jackson and D. J. Thompson. J. Organomet. Chem., 159, C29 (1978).
(10) T. Hayashi, T. Mise. S. Mitachi, K. Yamamoto, and M. Kumada. Tetrahedron Lett., 1133 (1976).
(11) (a) K. Achiwa. J. Am. Chem. Soc., 98, 8205 (1976); (b) K. Achiwa. Chem. Lett., 777 (1977).
(12) For a preliminary communication see W. R. Cullen and E.-S. Yeh, J. Organomet. Chem., C13, 139 (1977). We began working on these systems about the same time as Kumada and co-workers. ${ }^{13}$ who reported that rhodium(l) complexes of PPFA are effective for the asymmetric hydrogenation of ketones.
(13) T. Hayashi, K. Yamamoto, and M. Kumada. Tetrahedron Lett., 4405 (1974).
(14) R. G. Ball and N. C. Payne. Inorg. Chem, 16, 1187 (1977).
(15) S. W. Gokel and I. K. Ugi. J. Chem. Educ., 49, 249 (1972).
(16) G. Marr and T. Hunt. J. Chem. Soc. C. 1070 (1969).
(17) M. Kumada, K. Yamamoto, and T. Hayashi, Asahi Garasu Kogyo Gijutsu Shoreikai Kenkyu Hokoku, 26, 199 (1975).
(18) E. W. Abel. M. A. Bennett, and G. Wikinson, J. Chem. Soc., 3178 (1959).
(19) In some experiments the solid did not precipitate so ethanol was added until a slight turbulence was observed. A drop of diethyl ether was added and the solution was cooled to $4^{\circ} \mathrm{C}$ for 10 h . This procedure gave a precipitate of the same red solid.
(20) R. Cramer, J. Am. Chem. Soc., 86, 217 (1964)
(21) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 93, 2397 (1971).
(22) L. Vallarino. J. Chem. Soc.. 2287 (1957).
(23) R. B. King. "Organometallic Syntheses"'. Vol. 1, Academic Press. New York, 1965. p 181.
(24) F. Knoop and J. G. Blanco, Z. Phys. Chem. (Leipzig), 146, 272 (1925).
(25) T. P. Dang. J.-C. Poulin, and H. B. Kagan. J. Organomet. Chem., 91, 105 (1975).
(26) S. M. Birbaum, L. Levintow. R. B. Kingsley, and J. P. Greenstein. J. Biol. Chem.. 194, 455 (1952).
(27) "International Tables for X-ray Crystallography", Vol. IV, Kynoch Press, Birmingham, England. 1974. Table 2.2A.
(28) D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970).
(29) (a) L. F. Battelle, R. Bau, G. W. Gokel, R. T. Oyakawa, and I. K. Ugi. J. Am. Chem. Soc., 95, 482 (1973); (b) D. Marquarding. H. Klusacek, G. Gokel, P. Hoffmann, and I. Ugi, ibid., 92, 5389 (1970): (c) D. Marquarding. H. Burghard. I. Ugi. R. Urban, and H. Klusacek. J. Chem. Res. (M), 0915 (1977): J. Chem. Res. (S), 82 (1977).
(30) F. W. B. Einstein and A.C. Willis. Acta Crystallogr., in press.
(31) E.g.. (a) W. Hieber and R. Kummer. Chem. Rev. 100, 148 (1976); (b) W. R. Cullen and J. A. J. Thompson. Can. J. Chem., 48, 1730 (1970).
(32) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 98, 2143 (1976).
(33) K. D. Tau, D. W. Meek, T. Sorrell. and J. A. Ibers. Inorg. Chem., 17, 3454 (1978), and references cited therein.
(34) J.-M. Manoli, A. P. Gaughan, and J. A. Ibers, J. Organomet. Chem., 72, 247 (1974).
(35) C. Potvin. J. M. Manoli, G. Pannetier, R. Chevalier, and N. Platzer. J. Organomet. Chem., 113, 273 (1976).
(36) F. P. Boer and J. J. Flynn, J. Am. Chem. Soc., 93, 6495 (1971); M. R Churchill and K.-K. G. Lin, ibid., 96, 76 (1974); J. P. Declerq, G. Germain, and M. Van Meersche, Acta Crystallogr., Sect. B, 31, 2896 (1975): J. A. Jarvis and R. Whyman. J. Chem. Soc.. Chem. Commun., 562 (1975).
(37) S. W. Kaiser. R. B. Saillant. W. M. Butler, and P. G. Rasmussen, Inorg Chem., 15, 2681 (1976).
(38) J. A. bers and R. G. Snyder. Acta Crystallogr., 15, 923 (1962).
(39) J. Halpern. D. P. Riley, A. S. C. Chan, and J. J. Pluth. J. Am. Chem. Soc., 99, 8055 (1977).
(40) D. A. Slack and M. C. Baird. J. Organomet. Chem., 142, C69 (1977).
(41) (a) J. M. Brown and P. A. Chaloner. J. Chem. Soc., Chem. Commun., 321 (1978); (b) ibid., 646 (1978): (c) Tetrahedron Lett., 21, 1877 (1978).
(42) M. A. Bennett and E. J. Hann. J. Organomet. Chem., 124, 213 (1977).
(43) R. R. Schrock and J. A. Osborn, Inorg. Chem., 9, 2339 (1972).
(44) W. S. Knowles, M. J. Sebacky, and B. D. Vineyard, J. Chem. Soc., Chem. Commun., 10 (1972).
(45) D. Sinou and H. B. Kagan. J. Organomet. Chem., 114, 325 (1976).
(46) J. Halpern in ref 9c. p 30 .
(47) B. E. R. Schilling. R. Hoffmann, and J. W. Faller. J. Am. Chem. Soc.. 101, 592 (1979). and references cited therein.
(48) T. Hayashi, T. Mise, and M. Kumada, Tetrahedron Lett., 4351 (1976).

